
Program Logic for Higher-Order Probabilistic
Programs in Isabelle/HOL

Michikazu Hirata, Yasuhiko Minamide, Tetsuya Sato

Tokyo Institute of Technology

FLOPS2022
May 10, 2022

Introduction Probabilistic Programming Language

Probabilistic Programming Languages

Programmers write a probabilistic distribution as a program.

The languages support sampling and conditioning.

Ex.∗ The distribution when we roll two dice and at least one die is 4.

∗
Adrian, S. Probabilistic programming.

https://www.cs.cornell.edu/courses/cs4110/2016fa/lectures/lecture33.html.

Introduction Probabilistic Programming Language

Probabilistic Programming Languages

Monte Carlo method
For a sequence x1, . . . , xn sampled from a distribution d,

Ex∼d[h(x)] ≈ the average of h(x1), . . . , h(xn).

(d is a probability distribution on X and h : X ⇒ real is a function.)

montecarlo : nat⇒ P [real]

montecarlo n ≡ if (n = 0) then return 0

else do {
m← montecarlo (n− 1);

x← d;

return ((1/n) ∗ (h(x) + m ∗ (n− 1))) }

P [real] is the type of probability distributions on real.

Expected property: The grater n is, the closer montecarlo n is to Ex∼d[h(x)].

Introduction Probabilistic Programming Language

Semantics of Probabilistic Programming Languages

Semantics based on measure theory
The probability monad (the Giry monad) G.

Γ ⊢ e : P [X]
Interpretation−−−−−−−−−→ A measurable function JeK : JΓK → G(JXK).

Problem: Function spaces (with desired properties) do not exist in general.

Semantics based on quasi-Borel spaces[Heunen+, LICS2017]

A suitable model for higher-order languages.

Function spaces exist.

Every probability distribution on standard borel spaces (e.g. Rn, N) is
represented as a probability distribusion on a quasi-Borel space.

The probability monad is commutative strong.

Introduction Probabilistic Programming Language

The Verification Framework PPV[Sato+, POPL2019]

PPV(Probabilistic Programming Verification framework) is a verification
framework for higher-order probabilistic programming language.

PPV consists of the language and three kind of logics
(Assertion logic, Unary logic, Relational logic).

The language supports sampling and conditioning.

Its semantics is based on quasi-Borel spaces.

PPV was applied to verify

Monte Carlo method,

Importance sampling, and

Gaussian mean learning.

Introduction Contributions

Contributions

Goal:

Verification of higher-order probabilistic programs with proof assistant.

Contributions:

Formalizing quasi-Borel spaces in Isabelle/HOL

Formalizing a core part of PPV
(The language, Assertion logic, Unary logic)

Our PPV does not support conditioning.
We introduced integrability in the logic because it is necessary.

Verification of the Monte Carlo method on mechanized PPV (including
the integrability)

Introduction Contributions

Contributions

Goal:

Verification of higher-order probabilistic programs with proof assistant.

We choose Isabelle/HOL.

Rich probability theory library (including the Giry monad)

Quasi-Borel spaces 8,950
PPV 3,100
Integrability of Monte Carlo approximation 150
Verification of the Monte Carlo method 300

Total 12,500

Verification of Monte Carlo Approximation

Outline

1 Introduction

2 Verification of Monte Carlo Approximation

3 Formalization of PPV

4 Conclusion

Verification of Monte Carlo Approximation The Weak Law of Large Numbers

Verification of Monte Carlo Approximation

Monte Carlo method
For a sequence x1, . . . , xn sampled from a distribution d,

Ex∼d[h(x)] ≈ the average of h(x1), . . . , h(xn).

(d is a probability distribution on X and h : X ⇒ real is a function.)

montecarlo : nat⇒ P [real]

montecarlo n ≡ if (n = 0) then return 0

else do {
m← montecarlo (n− 1);

x← d;

return ((1/n) ∗ (h(x) + m ∗ (n− 1))) }

Theorem (The weak law of large numbers)

Let (Xn)n=1,2,··· be i.i.d. random variables with the mean µ and the variance
σ2 < ∞. For ε > 0,

lim
n→∞

Pr

[∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε

]
= 0.

Verification of Monte Carlo Approximation The Weak Law of Large Numbers

Verification of Monte Carlo Approximation

Γ ≡ ε : real, µ : real, σ : real, d : P [X], h : X⇒ real

Ψ ≡ {σ2 = Vx∼d[h x], µ = Ex∼d[h x], ε > 0, integrable d h, integrable d h
2}

Γ | Ψ ⊢UPL montecarlo : nat⇒ P [real] | ∀n : nat.n > 0→ Pr
y∼r n

[|y− µ| ≥ ε] ≤ σ2/nε2

integrable µ f The expected value Ex∼µ[f x] exists as a finite value
(f is integrable w.r.t. µ).

Theorem (The weak law of large numbers)

Let (Xn)n=1,2,··· be i.i.d. random variables with the mean µ and the variance
σ2 < ∞. For ε > 0,

lim
n→∞

Pr

[∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε

]
= 0.

Verification of Monte Carlo Approximation The Weak Law of Large Numbers

Verification of Monte Carlo Approximation

Γ ≡ ε : real, µ : real, σ : real, d : P [X], h : X⇒ real

Ψ ≡ {σ2 = Vx∼d[h x], µ = Ex∼d[h x], ε > 0, integrable d h, integrable d h
2}

Γ | Ψ ⊢UPL montecarlo : nat⇒ P [real] | ∀n : nat.n > 0→ Pr
y∼r n

[|y− µ| ≥ ε] ≤ σ2/nε2

Γ | Ψ ⊢PL ∀n : nat.integrable (montecarlo n)(λx.x) ∧ integrable (montecarlo n)(λx.x2)

integrable µ f The expected value Ex∼µ[f x] exists as a finite value
(f is integrable w.r.t. µ).

The integrability of the program is required to prove the UPL-judgment.

Verification of Monte Carlo Approximation The Proof of Monte Carlo Method

The Proof of Monte Carlo Method

We proved according to the proof outline shown in [Sato+, POPL2019].

We additionally need to prove the integrability of the program.

Our proof requires a large number of steps of equational reasoning
because we have not implemented automation.

Pen and paper proof: 7 lines

Ey∼(tn≫=(λm.d≫=(λx.return ((h x+m∗n)/(S n)))))[y]

= Ey∼(tn⊗d≫=(λ(m,x).return ((h x+m∗n)/(S n))))[y]

= E(m,x)∼tn⊗d

[
h x + m ∗ n

S n

]
=

1

S n
∗ E(m,x)∼tn⊗d[h x] +

n

S n
∗ E(m,x)∼tn⊗d[m]

=
1

S n
∗ Ex∼d[h x] +

n

S n
∗ Em∼tn [m]

=
1

S n
∗ µ +

n

S n
∗ Em∼tn [m]

= µ

In Isabelle: around 100 lines

Formalization of PPV

Outline

1 Introduction

2 Verification of Monte Carlo Approximation

3 Formalization of PPV

4 Conclusion

Formalization of PPV PPV: Syntax and Typing System

PPV: Syntax and Typing System

The programming language: HPProg

T ::= unit | nat | bool | real | preal | T × T | T ⇒ T | P [T],
e ::= x | c | f | e e | λx.e | ⟨e, e⟩ | πi(e) | rec nat e e

| return e | bind e e | Bernoulli(e) | Gauss(e, e).

P [T] is the type of probability distributions on T .

Typing rules are standard.

Γ ⊢ e : T
Γ ⊢ return e : P [T]

Γ ⊢ e : P [T] Γ ⊢ f : T ⇒ P [T ′]

Γ ⊢ bind e f : P [T ′]

Γ ⊢ e : real
Γ ⊢ Bernoulli(e) : P [bool]

Γ ⊢ e : real Γ ⊢ e′ : real
Γ ⊢ Gauss(e, e′) : P [real]

Formalization of PPV Formalization of PPV

Formalization of PPV

We shallowly embed PPV.

Type T
Interpretation−−−−−−−−−→ An object JT K of QBS

Typed term Γ ⊢ e : T
Interpretation−−−−−−−−−→ A morphism JeK : JΓK → JT K

In Isabelle/HOL

definition "hpprog_typing Γ e T ≡ e ∈ Γ →Q T"

QBS

Objects · · · Quasi-Borel spaces.

Morphisms · · · Structure-preserving functions.

Γ →Q T = the set of all morphisms from Γ to T.

Similarly, logics of PPV are defined according to its semantics.

Formalization of PPV De Bruijn Index

Formalization of PPV

De Bruijn index

definition "var1 ≡ snd"

lemma hpt_var1:

"Γ,,Z ⊢t var1 ;; Z"

definition "var2 ≡ snd ◦ fst"

lemma hpt_var2:

"Γ,,Z,,Y ⊢t var2 ;; Z"

*Γ,,Z,,Y = (Γ
⊗

Q Z)
⊗

Q Y

definition "λt ≡ curry"

lemma hpt_abs:

assumes "Γ,,X ⊢t t ;; T"

shows "Γ ⊢t λt t ;; X ⇒Q T"

Ex. Γ, y : Y ⊢ (λx.x) y : Y

lemma "Γ,,Y ⊢t (λt var1) $t var1 ;; Y"

De Bruijn index makes reasoning cumbersome.

Formalization of PPV The Original PPV vs Our Mechanized PPV

The Original PPV vs Our Mechanized PPV

Conditioning

Our mechanized PPV does not support the conditioning.

We use the probability monad[Heunen+, LICS2017] on QBS.

The original PPV uses the σ-finite measure monad[Scibior+, POPL2018]
on QBS.

The probability monad is constructed from the Giry monad which is included
in the standard library HOL-Probability.

Formalization of PPV The Original PPV vs Our Mechanized PPV

The Original PPV vs Our Mechanized PPV

Integrability

We use the following Eqs. in the proof of the Monte Carlo approximation.

Ex∼d[f x+ g x] = Ex∼d[f x] + Ex∼d[g x]. (1)

V(x,y)∼d1⊗d2
[f x+ g y] = Vx∼d1

[f x] + Vy∼d2
[g y]. (2)

(1) holds if

f and g are non-negative, or

f and g are integrable w.r.t. d.

In the proof of (2), we use (1) with functions which might be negative.

Integrability is necessary!

Conclusion Conclusion

Conclusion

Formalizing quasi-Borel spaces in Isabelle/HOL

Formalizing a core part of PPV.
(The language, Assertion logic, Unary logic)

Our PPV does not support conditioning.
We added integrability in the logic because it is necessary.

Verification of the Monte Carlo method on mechanized PPV (including
the integrability).

The formalization of quasi-Borel spaces is available at AFP*.
The entire formalization is available at author’s repository**.

* Quasi-Borel Spaces, Archive of formal proofs, 2022.
** https://github.com/HirataMichi/PPV

Conclusion Future Works

Future Works

Conditioning
We need to formalize the σ-finite measure monad to support conditioning.

Proof automation
It may reduce cost of verification to prove simple Eqs. semantically,
rather than apply rules manually.

Relational program logic
We expect no major difficulties.

Applications

Sample size required in importance sampling
Differential privacy

	Introduction
	Probabilistic Programming Language
	Contributions
	Contributions

	Verification of Monte Carlo Approximation
	The Weak Law of Large Numbers
	The Proof of Monte Carlo Method

	Formalization of PPV
	PPV: Syntax and Typing System
	Formalization of PPV
	De Bruijn Index
	The Original PPV vs Our Mechanized PPV

	Conclusion
	Conclusion
	Future Works

